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Abstract

We provide theoretical guarantees for label consistency in generalizedk-means
problems, with an emphasis on the over�tted case where the number of clusters
used by the algorithm is more than the ground truth. We provide conditions under
which the estimated labels are close to a re�nement of the true cluster labels. We
consider both exact and approximate recovery of the labels. Our results hold for
any constant-factor approximation to thek-means problem. The results are also
model-free and only based on bounds on the maximum or average distance of the
data points to the true cluster centers. These centers themselves are loosely de�ned
and can be taken to be any set of points for which the aforementioned distances
can be controlled. We show the usefulness of the results with applications to some
manifold clustering problems.

1 Introduction

Consider the problem of clustering data points sampled according to some probability measure�
from a normed spaceX with normk � kX . In the ideal setting, the generalizedk-means clustering
minimizes the population cost function

Q(� ; � ) :=
� Z

min
1� ` � L

kx � � ` k
p
X d� (x)

� 1=p
(1)

where� = ( � 1; : : : ; � L ) 2 X L is a set ofL vectors inX , for some �xed integerL . In practical data
analysis, we are given a samplef x1; : : : ; xn g drawn from� and solve an empirical version of(1),
namely,

bQ(� ) = Q(� ; Pn ) :=
� 1

n

nX

i =1

min
1� ` � L

kx i � � ` k
p
X

� 1=p
: (2)

Here,Pn := 1
n

P n
i =1 � x i is the empirical measure associated with the sample and� x is the point

mass measure atx. The minimizer ofbQ(�) overX L is denoted asb� = ( b� 1; : : : ; b� L ) and each pointx i

is assigned a cluster labelbzi := argmin ` kx i � b� ` kX .

Meanwhile, we assume that each data pointx i also has a true cluster labelzi 2 [K ] := f 1; : : : ; K g
which is determined solely by an unknown data-generating process. These true labels are not
necessarily related to the optimal solutions of(1) or (2). To distinguish the two, we refer to the
clustering induced by(zi ) as thetrue clustering, while a clustering that minimizes the generalized
k-means cost function(2), i.e., the clustering induced by(bzi ), is referred to as anoptimal k-means
clustering. In this paper, we consider thelabel consistencyproblem, that is, how close the labels
(bzi ) estimated byk-means clustering are to the true labels(zi ). Note that we allow the number of
k-means clustersL to be different from the true number of clustersK .
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In the above formulation, the case wherep = 2 , X = Rd andk � kX is the Euclidean norm leads to
the classical and widely usedk-means problem. Much of the theoretical analysis ofk-means has been
performed in this case. Early work has focused on how close the optimization problems based on the
empirical and ideal cost functions(2) and(1) are to each other, where the closeness is measured in
terms of the recovered centers (i.e.,b� and� ) or the optimal value of the objective function.

Such consistency results are proved, for the global minimizers of(2), in the early work of [22,
29] and also in [30, 19] from the vector quantization perspective. These classical results do not
directly apply to the performance of thek-means in practice, mainly because solving(2) is NP-hard
and approximation methods are usually applied to deal with it. Also, considerations of the label
consistency problem are absent from this line of work since no true clustering, external to thek-means
problem, is assumed to exist.

More recently, there has been more interest in the consistency of practicalk-means algorithms [14, 21]
as well as the label consistency problem. Lu and Zhou [21] obtain sharp bounds on the label consis-
tency of the Lloyd's algorithm [20] under a sub-Gaussian mixture model. Semide�nite programming
(SDP) relaxation is another popular technique for deriving polynomial-time approximations to the
k-means problem [28]. Its label consistency has been studied when data is generated from the stochas-
tic ball model [4, 10], sub-Gaussian mixtures [25, 8, 9], the Stochastic Block Model (SBM) [9]
and general models [18]. Convex clustering is another relaxation method whose label consistency
has been discussed in [34, 27, 11, 31]. The literature on community detection in SBM, a network
clustering problem, is also mainly focused on label consistency and inspires our work here; see
[1, 33] for a review of those results. For label consistency in kernel spectral clustering, see [2].

In this paper, we study the label consistency of approximate solutions of the generalizedk-means
problem(2) whenL � K . Our focus will be on the over�tted case whereL > K . This is often
relevant in practice since the data-generating process may have a natural number of clustersK that is
unknown a priori. An example is the sub-Gaussian mixture withK components. More interesting
examples are given in Section 3. All the aforementioned works on label consistency exclusively
consider the correctly-�tted caseL = K . We show that when the data-generating process admits a
set of centers that satisfy certain separation conditions, estimated labels withL � K clusters, are
close to are�nementof the true labels. These bounds reduce to the label consistency criteria for
L = K , but have no counterpart in the literature forL > K .

Over�tting in k-means is considered in [32, 23] where it is shown to improve the approximation factor
(see Assumption 1(b)) of certain polynomial-timek-means algorithms. Analysis of the approximation
factor is concerned with how close one can get to the optimal value of thek-means objective function.
In contrast, we are concerned with the label recovering problem and not directly concerned with
how well the objective function is approximated. Our work is also aligned with the recent trend of
beyond worst caseanalysis of the NP-hard problems [6], where the performance of the algorithms
are considered assuming that there are some meaningful structures in the data (e.g., true clusters). We
refer to Remark 1 for a more detailed comparison with this literature.

Our results are algorithm-free in the sense that they apply to any algorithm that achieves a constant-
factor approximation to the optimal objective. They are also model-free in the sense that we do not
make any explicit assumption on the data-generating process. This is important in practice, since
many common data models, such as sub-Gaussian mixtures, are often too simpli�ed to capture real
clustering problems. We provide examples of more complicated data models in Section 3 and show
how our general results can provide new insights for these models. Sincek-means clustering often
appears as a building block in many sophisticated clustering algorithms, we believe our results will
be of broad interest in understanding the performance of clustering algorithms in over�tted settings.

Notation. Q(� ; � ) is only dependent on the set of values among the coordinates of� . Although we
view � as a vector (for which the order of elements matter), with some abuse of notation, we view
Q(�; � ) as a set function (mapping2X to R) that is only sensitive to the set of values represented by� .
This justi�es using the the same symbol for the function irrespective of the number of coordinates
of � , i.e., the number of clusters. The reason to keep� as an (ordered) vector is to make the cluster
labels well-de�ned. For simplicity, letk � k = k � kX . For the case whereX � Rd, one often takes
k � k to be the Euclidean norm, but our results are valid for any norm onRd, and more broadly any
normed spaceX .
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2 Main Results

We �rst state assumptions about thek-means clustering algorithm.

Assumption 1. Consider an algorithm for the generalizedk-means problem(2), referred to as
ALG(p) hereafter, and letb� (L ) 2 X L and b� (K ) 2 X K be its estimated centers when applied withL
andK clusters, respectively. LetL � K . Assume that ALG(p) has the following properties, for all
input sequences(x i ):

(a) Ef�ciency: The Voronoi cell of every estimated centerb� (L )
` contains at least one of(x i ).

(b) � -approximation: bQ(b� (K ) ) � � � min � 2X K bQ(� ), and similarly withK replaced byL .

Ef�ciency can be achieved by substituting centers whose Voronoi cells have an empty intersection
with f x i g, by those having the opposite property. For� -approximation, the factor� can depend on
the number of clustersK (or L ). For example, thek-means++ algorithm has� = O(log K ), with
high probability over the initialization [3]. However, there are also constant-factor approximation
algorithms fork-means where� = O(1) independent ofK (or L ) [24, 13, 15]. For example,
with local search,k-means++ can achieve a constant-factor approximation [16]. In addition, � -
approximation is not required for all inputs. That is, we are not concerned with the worst-case
approximation factor. The� in Assumption 1(b) is the approximation factor of the algorithm on the
speci�c data under consideration. It is enough for an algorithm to achieve good approximation only
on the data of interest.

For some of the results, Assumption 1(b) can be replaced with the following modi�ed version:
(b0) � -approximation only forK clusters plus a mononoticity assumption:bQ(b� (L ) ) � bQ(b� (K ) ).
Mononoticity is also a reasonable requirement and obviously true for the exactk-means solutions.

Next, we extend the de�nition of the misclassi�cation rate to the over�tted case.

De�nition 1. The (generalized) misclassi�cation rate between two label vectorsz 2 [K ]n and
bz 2 [L ]n , with K � L , is

Miss(z; bz) = min
!

1
n

nX

i =1

1f zi 6= ! (bzi )g;

where the minimization ranges over all surjective maps! : [L ] ! [K ].

When L = K , a surjective map! is necessarily a bijection and the above becomes the usual
de�nition of misclassi�cation rate when the number of clusters is correctly identi�ed. In this case,
Miss(z; bz) = 0 means that there is a one-to-one correspondence between the estimated and true
clusters. The generalized de�nition above allows us to extend this notion of exact recovery to the
caseL > K . In particular,Miss(z; bz) = 0 whenL > K , if and only if bz is are�nementof z. To see
this, note thatMiss(z; bz) = 0 implies the existence of a map! : [L ] ! [K ] such that! (bzi ) = zi for
all i . This in turn is equivalent to:bzi = bzi 0 =) zi = zi 0, which is the re�nement relation for the
associated clusters. In general,Miss(z; bz) is small if bz is close to a re�nement ofz.

We also use the (optimal) matching distances between elements of two vectors viewed as sets.

De�nition 2. For � 2 X L and� � 2 X K , de�ne the`1 and`p optimal matching distances as

d1 (�; � � ) = min
�

max
1� k � K

k� � (k ) � � �
k k; dp(�; � � ) = min

�

� KX

k=1

k� � (k ) � � �
k kp

� 1=p
;

where� : [K ] ! [L ] ranges over all injective maps.

ForK = L, d1 is an upper bound on the Hausdorff distance between the two sets. Obviously, we
haved1 � dp for anyp � 1.

2.1 Distance to true centers

Let z = ( zi )n
i =1 2 [K ]n be a given set of true labels for the data points(x i )n

i =1 . In addition, our
results are stated in terms of a set of vectors� � = ( � �

k )K
k=1 which we refer to as the “true centers”.
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Throughout,� � will be only vaguely speci�ed. The only requirement on� � is that together with the
observed data points(x i ) and the true labels(zi ), they satisfy the deviation bounds in each theorem,
e.g.,max1� i � n kx i � � �

zi
k � � in Theorem 1, etc. Let� k =

P n
i =1 1f zi = kg=n be the proportion

of observed data points in true clusterk and let� min = min k � k .

We let b� be a solution of thek-means algorithm withL � K centers and letbzi 2 argmin` kx i � b� ` k
be the corresponding estimated labels. Our �rst result provides guarantees for exact label recovery,
in the extended sense of recovering a re�nement of the true partition whenL > K and the exact
partition whenL = K .

Theorem 1(Exact recovery). Consider a vector of (true) centers� � 2 X K and labels(zi )n
i =1 2 [K ]n .

Pick �; � > 0 such thatmax1� i � n kx i � � �
zi

k � � , and

min
(k;k 0): k6= k 0

k� �
k � � �

k 0k � �: (3)

Consider an algorithm ALG(p) for problem(2), satisfying Assumption 1, and let(bzi )n
i =1 2 [L ]n and

b� 2 X L be the estimated labels and centers of ALG(p) applied with theL � K . Then,

�
�

> 2
(1 + � )

� 1=p
min

+ 4 = ) Miss(z; bz) = 0 ; dp(b�; � � ) �
(1 + � )�

� 1=p
min

: (4)

WhenL = K , the assertionMiss = 0 means that there is a permutation� on[K ] such that� (bzi ) = zi
for all i , that is, we have the exact recovery of labels(zi ) in the classical sense. WhenL > K ,
Theorem 1 guarantees the exact recovery of a re�nement of the true labels(zi ).

Example 1(Stochastic Ball Model). Assume that data are generated from the stochastic ball model
considered in [26], wherex i = � �

zi
+ r i with r i sampled independently from a distribution supported

on the unit ball inRd. Here, f � �
k gK

k=1 � Rd are a �xed set of centers. Clearly, we can take
� = 1 in Theorem 1. Then, any� -approximatek-means algorithm achieves exact recovery when
� > 2 + 2(1 + � )=

p
� min for L = K . In the over�tted case, when� > 4 + 2(1 + � )=

p
� min , the

estimated label vector is an exact re�nement of the true labels(zi ).

In the above example, although it is intuitively clear that for a suf�ciently large� , the solution of the
k-means problem should achieve exact label recovery (in the extended sense), Theorem 1 allows us
to provide a provable guarantee for any constant-factor approximation, with an explicit bound on the
separation parameter� .

We now turn to approximate recovery where the misclassi�cation rate is small.

Theorem 2 (Approximate Recovery). Consider a vector of (true) centers� � 2 X K and labels
(zi )n

i =1 2 [K ]n . Pick"; � > 0 such that( 1
n

P n
i =1 kx i � � �

zi
kp)1=p � " , and(3) holds. Consider an

algorithm ALG(p) for problem(2), satisfying Assumption 1, and let(bzi )n
i =1 2 [L ]n and b� 2 X L be

the estimated labels and centers of ALG applied with theL � K . Then, for anyc > 2,

�
"

>
(1 + � )c

� 1=p
min

=) Miss(z; bz) < K (1 + � )pcp
� "

�

� p
; dp(b�; � � ) �

(1 + � )"

� 1=p
min

: (5)

The key difference between Theorems 1 and 2 is the bounds assumed on the deviationsD i :=
kx i � � �

zi
k; i 2 [n]. Theorem 1 assumes a bound on the maximum distance to true centers,maxi D i ,

while Theorem 2 assumes a bound on an average distance,( 1
n

P
i D p

i )1=p, leading to a more relaxed
condition.

Theorem 2 provides an upper bound on the misclassi�cation rate when a certain separation condition
is satis�ed. To simplify, consider the caseK = � = p = 2 and takec = 2 :1. Then, Theorem 2
implies the following: For every� > 0, there exists a constantc1(�; � min ) > 0 such that if

�=" � c1(�; � min ); (6)

then any 2-factork-means algorithm will have Miss� � to the target labels. The next proposition
shows that condition (6) is sharp up to constants.

Proposition 1. There exists a family of datasetsf (x i ; zi )gn
i =1 , with K = 2 balanced true clusters

(i.e., � min = 1=2) and parameterized by true center separation� and" = ( 1
n

P n
i =1 kx i � � �

zi
k2)1=2
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with the following property: Given any constant� 2 (0; 1=2), there exists a constantc2(� ) > 0, such
that if �=" < c 2(� ), then any 2-factork-means approximation algorithm withL = 2 clusters has
misclassi�cation rate satisfying12 � � � Miss � 1

2 . Moreover, any 2-factork-means approximation
algorithm withL = 4 clusters will recover a perfect re�nement of the original clusters in the above
setting.

The proof of Proposition 1 can be found in the Supplementary Material. This proposition shows that
if the separation condition(6) is reversed, one can force the performance of anyk-means algorithm
to be arbitrarily close to that of random guessing. The true centers in Proposition 1 are the natural
centers implied by thek-means cost function for the true labels, that is,� �

k = 1
n

P
i x i 1f zi = kg for

k = 1 ; 2. One can takec1(�; � min ) = 6 :3 max(1=� min ; 2=� )1=2 andc2(� ) = sin(tan � 1(
p

�= 45))
for the constants in (6) and Proposition 1.

Remark 1. The separation condition(6) is related to thedistribution stabilityintroduced in [5].
Roughly speaking distribution stability plus the following property implies our condition:

(D1) For every pair of distinct clustersCk andC` with centers� �
k and� �

` , there is a pointx 2 C`
such thatkx � � �

k k � k � �
` � � �

k k.

That is, every clusterC` has points which are closer than� �
` to the centers of other clusters. This

property is quite mild and one expects it to hold with high probability if the distribution of the
points have positive density w.r.t. to the (full-dimensional) Lebesgue measure in a ball around the
center. The above seems to suggest that distribution stability is slightly weaker than our condition(6).
However, in the presence of (D1), we can also signi�cantly relax distribution stability to arrive at
our condition, the details of which are provided in the Supplementary Material. In this sense, these
two notions are closely related but not directly comparable, i.e., neither is weaker than the other in
general.

Example 2(Sub-Gaussian mixtures). Let us assume that the data is generated from aK -component
sub-Gaussian mixture modelx i = � �

zi
+ d� 1=2wi wherewi = ( wi 1; : : : ; wid ) 2 Rd is a zero mean

sub-Gaussian noise vector with sub-Gaussian parameter� i , andzi 2 [K ] is the latent label of thei th
observation. This is an extension of the sub-Gaussian mixture model considered in [7]. Determining
whether(� �

k )K
k=1 is actually the solution of the population problem(1) is, itself, challenging and the

answer may depend on the exact distribution off wi g. Nevertheless, our results allow us to treat
(� �

k ) as the true centers. Below we sketch how Theorem 2 applies in this case. The details of the
arguments, including the exact de�nition of a sub-Gaussian vector are provided in the Supplementary
Material. Let� max = max i � i and set� 2

i := Ekd� 1=2wi k2
2 and �� 2

n := 1
n

P n
i =1 � 2

i . Assume that
there is a numerical constantC > 0 such that�� 2

n � C� 2
max . Then, one can show that

P
� 1

n

nX

i =1

kx i � � �
zi

k2 > 2�� 2
n

�
� e� c1 n �� 4

n =� 4
max =: pn

for some numerical constantc1 > 0. Taking"2 = 2�� 2
n andp = 2 in Theorem 2, we have that with

probability at least1 � pn ,

� 2

2�� 2
n

>
(1 + � )2c2

� min
=) Miss(z; bz) � 2K (1 + � )2c2

� �� n

�

� 2
;

where� is as in(3) andc > 2. In a general problem,�� n , � max and� all can vary withn. In
order to have label consistency for an ALG(2) algorithm, it is enough to have�� n =� = o(1) and
n �� 4

n =� 4
max ! 1 . The consistency here is based on the extended De�nition 1 and includes the

over�tted case in which a re�nement of the true labels is consistently recovered. We note that the
model in this example includes a very general Gaussian mixture model as a special case, namely the
casewi � N (0; � i ) where the covariance matrices� i 2 Rd� d are allowed to vary with each data
point. In this case, one can take� max = max 1� i � n k� i kop wherek � kop denotes the operator norm,
and �� 2

n := 1
n

P n
i =1 tr(� i )=d.

2.2 Distance to fake centers

We now extend Theorem 2, to allow for “fake” centersf e� ` gL
` =1 and the corresponding labelsf ezi g.

These can be constructed to reduce the required distance to the data points(x i ).
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Theorem 3(Approximate Recovery, II). For a �xed L � K , consider a vector of constructed centers
e� 2 X L , constructed labelsez = ( ezi )n

i =1 2 [L ]n and true labelsz = ( zi )n
i =1 2 [K ]n . Assume thatez

is a re�nement ofz, i.e. there ise! : [L ] ! [K ] such thate! (ezi ) = zi for all i 2 [n]. Pick "; � > 0
such that

� 1
n

nX

i =1

kx i � e� ezi k
p
� 1=p

� "; min
` 1 6= ` 2 ; e! ( ` 1 ) 6= e! ( ` 2 )

ke� ` 1 � e� ` 2 k � � (7)

Consider an algorithm ALG(p) for problem(2), satisfying Assumption 1, and let(bzi )n
i =1 2 [L ]n be

the estimated label vector of ALG(p) applied withL clusters. Then, for anyc > 2,
�
"

>
(1 + � )c

� 1=p
min

=) Miss(z; bz) < K (1 + � )pcp
� "

�

� p
: (8)

The advantage of Theorem 3 is that when the desired number of clustersL increases, the bound
on the misclassi�cation rate can go down: In some applications, by carefully constructing the fake
centerse� , we can make" smaller asL increases, while roughly maintaining the minimum separation
among fake centers associated with the true clusters. If successful, this implies that a re�nement of
the true clustering can be achieved even when it is hard to recover the true clustering itself. In the
following section, we show how this strategy can be applied to some manifold clustering problems.

3 The case for over�tting

We now illustrate applications of Theorem 3 in settings where it is hard to recover true clusters, based
on the idealK , but it is possible to obtain accurate re�nements by over�tting. The idea is to consider
clusters that look like submanifolds ofRd.

3.1 Mixture of curves

We say that a random variablex has a(�; � ) sub-Gaussian curve distributionif x =  (t) where
t 2 R has a sub-Gaussian distribution with parameter� and : R ! Rd is a locally� -Lipschitz map.
i.e.,k (t) �  (s)k � � jt � sj for all t; s 2 R such thatjt � sj � 1

� .

Proposition 2. Assume that(x i )n
i =1 are independent draws from aK -component mixture of(�; � )

sub-Gaussian curve distributions. That is,x i =  zi (t i ) wherezi 2 [K ], t i � Qzi independently
acrossi , eachQk is a sub-Gaussian distribution onR with parameter� , and each k is locally
� -Lipschitz. LetCk be the support of the distribution of k (t) wheret � Qk . Assume that

min
x 2C k ; y 2C k 0

kx � yk � � > 0; for all k 6= k0:

Then, there exist a constantC = C(K; �; �; �; � ) such that any ALG(2) satisfying Assumption 1
applied withL n � C

p
n logn clusters recovers a perfect re�nement ofz with probability� 1� n� 1.

The signi�cance of this result is that one recovers a perfect re�nement with the number of partitions
L n = o(n). It is trivial to obtain a perfect re�nement withL n = n, but not so withL n =n ! 0. This
is especially the case since one can achieve quite complex cluster con�gurations with the model in
Proposition 2, for some of which applyingk-means withK clusters will have a misclassi�cation rate
bounded away from zero. Section 3.3 provides some such examples where the true cluster centers
coincide, causing anyk-means algorithm applied with the trueK to incur a substantial error. See
also Supplementary Material for a discussion of whetherL n = O(

p
n logn) can be improved.

Various extensions of Proposition 2 are possible. We have the following extension to the noisy setting.
Corollary 1. Assume that the data is given byyi = x i + 1p

d
wi for i 2 [n] where(x i ) are as given

in Proposition 2 andwi are sub-Gaussian noise vectors as in Example 2. Then, under the same
assumptions as in Proposition 2, ALG(2) applied withL n � C

p
n logn achieves a misclassi�cation

rate . K (�� n =� )2 + 1
n with probability� 1 � pn � n� 1 where�� n andpn are de�ned in Example 2.

Corollary 1 shows that one can achieve consistent clustering (in the generalized sense) withL n = o(n)
clusters assuming that the noise-to-signal ratio�� n =� ! 0 andn �� 4

n =� 4
max ! 1 ; the same conditions

needed in the sub-Gaussian mixture example. Again, this result is signi�cant since even in the
noiseless case (�� n = 0 ), consistent recovery is not possible withL = K for some mixtures of curve
models.
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(a) Noisy(L = 4 ; � = 3) (b) Noisy (c) Noiseless

Figure 1: Line-circle model: (a) Scatter plot for the noisy version. The colors show theL = 4
estimated clusters byk-means. (b) and (c) show the (generalized) misclassi�cation rate versus� , the
radius of the circle, in the noisy and noiseless versions of the model.

3.2 Mixture of higher-order submanifolds

A version of Proposition 2 can be stated for a higher-dimensional version of the mixture-of-curves
model, if we consider generalizedk-means problems withp > 2. We say that a random variable
x has a(�; �; r ) sub-Gaussian manifold distributionif x =  (t) wheret 2 Rr has a sub-Gaussian
distribution with parameter� and : Rr ! Rd is a locally� -Lipschitz map. i.e.,k (t) �  (s)k �
� kt � sk for all t; s 2 Rr such thatkt � sk � 1

� .

Proposition 3. Assume that(x i )n
i =1 are independent draws from aK -component mixture of sub-

Gaussian manifold distributions, with parameters(�; �; r k ) for k 2 [K ], and letr = max r 2 [K ] r k .
LetCk be the support of the distribution of thekth component. Assume that

min
x 2C k ; y 2C k 0

kx � yk � � > 0; for all k 6= k0:

Then, there exist a constantC = C(K; �; �; �; r; � ) such that any ALG(p) satisfying Assumption 1,
applied withL n � C(n1=pp

logn)r clusters recovers a perfect re�nement ofz with probability
� 1 � n� 1. In particular, forp > r , we have perfect re�nement recovery withL n = o(n) clusters,
with high probability.

It is also possible to extend the results to more general distributions on submanifolds via a notion of
stochastic covering numbers. For random vectorx with distribution� C on a submanifoldC � Rd,
let N � C (" ) be the smallest integer for which, there is a high probability" -cover ofx, that is, a
�nite subsetN � C such thatP(min y2N kx � yk � " ) � 1 � n� 2: We state a generalization of
Proposition 3 to this setting in the Supplementary Material.

3.3 Numerical experiments

We �rst consider the (noiseless) line-circle model inR3, an example of mixture-of-curves. This model
has two clusters: (1) The uniform distribution on the circumference of a circle in thexz-plane, centred
at the origin, and (2) the standard Gaussian distribution on they axis. The minimum separation�
between the two clusters is the radius of the circle. We also consider the noisy version of this model
where we addN (0; � 2I 3). We sample data points with equal probability from the two clusters. It is
nearly impossible for thek-means to correctly label these two clusters whenL = 2 , since the centers
of the two clusters coincide. Figure 1 shows the scatter plot of the data simulated from the noisy
line-circle model, with noise level� = 0 :1, n = 3000 and� = 3 . Here, the noise level is set low
for better illustration. Different colors are used to label data points based on the output ofk-means
clustering withL = 4 , and this demonstrates that each estimated cluster is a subset of a true cluster.

The result aligns with Theorem 3. Although, the true centers coincide (with the origin) whenL = 2 ,
by increasingL , we can create fake centers on the line and the circle to have separation close to
� and thus get a small missclassi�cation rate. The other two panels in Figure 1 show the average
missclassi�cation rate over 32 repetitions versus� , for both the noiseless and noisy (� = 1 ) line-circle
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We start with three lemmas that are proved in the Supplementary Material:

Lemma 1. Let ALG(p) be ak-means algorithm satisfying Assumption 1(b') and letb� be its output
for L clusters. Furthermore, assume( 1

n

P n
i =1 kx i � � �

zi
kp)1=p � " . ThenQ(b� ; � � ) � (1 + � )" .

Lemma 2(Curvature). For every� � X L and� � 2 X K , with L � K ,

Q(� ; � � ) � � 1=p
min

�
dp(�; � � ) ^

�
2

�
:

Lemma 3. Assume thatmax1� i � n kx i � � �
zi

k � � andd1 (b�; � � ) �  . WhenL = K , if � > 2 +2 � ,
there exists a bijective function! : [K ] ! [K ] satisfying! (bzi ) = zi ; 8i 2 [n]. WhenL > K , if
� > 2 + 4 � , there exists a surjective function! : [L ] ! [K ] satisfying! (bzi ) = zi ; 8i 2 [n].

Proof of Theorem 1.As ( 1
n

P n
i =1 kx i � � �

zi
kp)1=p � max1� i � n kx i � � �

zi
k � � , combining Lemma 1

and 2, we have
�

dp(b�; � � ) ^
�
2

�
�

Q(b�; � � )

� 1=p
min

�
(1 + � )�

� 1=p
min

:

By the condition on� in (4), we have�=2 > (1 + � )�=� 1=p
min . Then,d1 (b�; � � ) � dp(b�; � � ) �  :=

(1 + � )�=� 1=p
min , which also makes the assumption in Lemma 3 that� > 2 + 4 � valid. Finally, the

result follows from Lemma 3.

Proof of Theorem 2.The argument is similar to one that has appeared in recent literature [17, 12, 33].
From the proof of Lemma 1 (in the Supplementary Material), we have

Q(b� ; � � ) �
� 1

n

nX

i =1

k� �
zi

� b� bzi k
p
� 1=p

� (1 + � )":

By Lemma 2
�

dp(b�; � � ) ^
�
2

�
�

Q(b�; � � )

� 1=p
min

�
(1 + � )"

� 1=p
min

:

By the separation assumption in(5), �=2 > (1 + � )"=� 1=p
min . Hencedp(b�; � � ) � (1 + � )"=� 1=p

min . Let
Ck = f i : zi = kg, jCk j = nk , and setTk := f i 2 Ck : k� �

zi
� b� bzi k � �=cg: Letting Sk = Ck n Tk ,

we obtain

jSk j� p=cp <
X

i 2 Sk

k� �
zi

� b� bzi k
p �

nX

i =1

k� �
zi

� b� bzi k
p � n(1 + � )p"p:

Therefore,
jSk j
nk

<
n(1 + � )pcp"p

nk � p � 1:

The last inequality is by assumption� > (1 + � )c"=� 1=p
min . Hence,Tk is not empty. Furthermore, we

argue that ifi 2 Tk andj 2 T` for k 6= `, i.e. zi 6= zj , thenbzi 6= bzj . Assume otherwise, that is,
bzi = bzj . Then

k� �
k � � �

` k � k � �
k � b� bzi k + k� �

` � b� bzj k � 2�=c < �

causing a contradiction.

Let L k := f bzi : i 2 Tk g andL =
S K

k=1 L k . De�ne a function! : L ! [K ] by setting! (`) = k
for all ` 2 L k andk 2 [K ]. By the property off Tk g shown above,L k ; k 2 [K ] are disjoint
and nonempty sets. This implies that! is well-de�ned and surjective. Extend! to a surjective
! : [L ] ! [K ] by arbitrarily de�ning it for [L ] n L. Note thatbzi 2 L k implieszi = k. It follows that
! (bzi ) = zi for all bzi 2 L , and

1
n

nX

i =1

1f zi 6= ! (bzi )g �
n � jLj

n
=

KX

k=1

jSk j
n

<
K (1 + � )pcp"p

� p :

The result follows.
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Proof of Theorem 3.By assumption,� -approximation holds for bothK andL clusters. Then,

bQ(b� ) � � bQ(L )
min ; where bQ(L )

min := min
� 2X L

bQ(� ):

Since bQ(L )
min � ( 1

n

P n
i =1 kx i � e� ezi k

p)1=p � " , by the triangle inequality inL p(� n ; X ),

� 1
n

nX

i =1

ke� ezi � b� bzi k
p
� 1=p

�
� 1

n

nX

i =1

kx i � e� ezi k
p
� 1=p

+
� 1

n

nX

i =1

kx i � b� bzi k
p
� 1=p

� (1 + � )":

Let Tk := f i 2 Ck : ke� ezi � b� bzi k � �=cg andSk = Ck n Tk . Then,

jSk j� p=cp <
X

i 2 Sk

ke� ezi � b� bzi k
p �

nX

i =1

ke� ezi � b� bzi k
p � n(1 + � )p"p:

Therefore,
jSk j
nk

<
n(1 + � )pcp"p

nk � p � 1

The last inequality is by assumption� � (1 + � )c"=� 1=p
min . HenceTk is not empty. Next we argue

that if i 2 Tk , j 2 T` for k 6= `, i.e. zi 6= zj , thenbzi 6= bzj . Assume otherwise, that isbzi = bzj . Since
ez is a re�nement ofz, zi 6= zj impliesezi 6= ezj ande! (ezi ) 6= e! (ezj ). By the triangle inequality,

ke� ezi � e� ezj k � k e� ezi � b� bzi k + ke� ezj � b� bzj k � 2�=c < �

causing a contradiction. The rest of the proof follows that of Theorem 2.

Proof of Proposition 2.Let mk be the mean ofQk . Then,P(jt i � mzi j > t ) � 2e� t 2 =2� 2
. Let

M =
p

6� 2 logn. By union bound, with probability� 1 � 2n� 2 we havejt i � mzi j � M for all
i 2 [n]. We can cover the set[� M; M ] � R, with L 0 = M=" 1-D balls of radius" . (Without loss of
generality, we assume thatL 0 is an integer for simplicity.) LetT = f � 1; : : : ; � L 0g one such cover and
note thatmk + T is an"-cover ofmk + [ � M; M ]. Let � k : R ! (mk + T ) be the projection from
R ontomk + T . Then,k zi (t i ) �  zi (� zi (t i ))k � � jt i � � zi (t i )j � �" , assuming that" � 1=� .

Let z0
i := argmin ` 02 [L 0] jt i � (mzi + � ` 0)j so that� zi (t i ) = mzi + � z0

i
. Then letL n = KL 0 and �x

a bijection� : [L n ] ! [K ] � [L 0] and de�ne the labelsezi = � � 1(zi ; z0
i ). Also consider the map

! 0 : [K ] � [L 0] ! [K ] given by! 0(k; `0) = k and sete! := ! 0 � � which is a surjective map from
[L n ] to [K ] satisfyinge! (ezi ) = zi . For` 2 [L n ] with � (`) = ( k; `0), de�ne e� ` =  k (mk + � ` 0). Then,
we havee� ezi =  zi (mzi + � z0

i
) =  zi (� zi (t i )) , hence the above argument givesk (t i ) � e� ezi k � �" .

It is also clear that the the separation condition(7) is satis�ed since by construction ife! (`1) 6= e! (`2)
with � (`1) = ( k1; `0

1) and � (`2) = ( k2; `0
2), thenk1 6= k2 hencee� ` 1 and e� ` 2 lie on different

manifolds (onCk1 andCk2 ). It follows that conclusion(8) of Theorem 3 holds forp = 2 and, say,
c = 3 but with " replaced with�" . Take" = ( c1

p
n) � 1 for constantc1 to be determined. Let

c2 = 3 � (1 + � )=� . As long asn� min > (c2=c1)2, the separation condition in(8) is satis�ed and we
haveMiss(z; bz) � K (c2=c1)2=n. Hence, as long asc1 >

p
Kc2, we will haveMiss(z; bz) < 1=n

which impliesMiss(z; bz) = 0 . We also need to satisfy" < 1=� that is c1 � �=
p

n. Taking
c1 =

p
Kc2 + � satis�es all the required constraints onc1. The required number of clusters is

L n = KL 0 = KM=" � 3K�c 1

p
n logn;

which proves the result withC = 3K�c 1. Note that sincec2=c1 < 1 andn� min � 1, the condition
n� min > (c2=c1)2 is automatically satis�ed. The proof is complete.
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This appendix contains further discussion of the results, the remaining proofs, details of some
examples and additional numerical experiments.

A Discussion

Proposition 2 and 3 show that perfect re�nement for sub-gaussian mixture-of-curves model can be
achieved when the number of clusters grows asL n = O(

p
n logn). To the best of our knowledge,

this is the �rst such result in the literature, that is, an upper bound on the minimum number of clusters
needed to achieve a perfect re�nement of the true clusters. What remains for future investigations to
determine is how tight this bound is. Empirically, we have found examples of the mixture-of-curves
model for whichL n � 1 seems to enough, but also an example whereL n �

p
n logn seems to be the

required scaling. Figure S1(a) shows a noisy circle-torus model (cf. Section D.1) withR = 10; r = 2
and� = 1 that demonstrates the scalingL n �

p
n logn. Here, we plot the average misclassi�cation

rate over 32 repetitions vsL n =
p

n logn for variousn. The fact that these plots coincide with each
other for differentn suggests that there is sharp threshold� n = C1

p
n logn such that withL n > � n ,

perfect re�nement recovery is possible and withL n < � n , impossible. Figure S1(b) shows an
example that exhibitsL n � 1 threshold: A line-circle model with parameters� = 4 , � = 1 and line
standard deviation =7.

The fact that, empirically, there are examples for whichL n has to grow as fast as
p

n logn for a
perfect re�nement recovery, suggests that the result of Proposition 2 may be sharp up to constants,
over the class of mixture-of-curves distributions considered.

B Connection to distribution stability

The distribution stability for theK -means assumes the following [1]:

kx � � �
k k2 � � �

OPTK

nk
; for all x =2 Ck ;

whereOPTK =
P n

i =1 kx i � � �
zi

k2 for theK -means optimal cluster labelsf zi g � [K ]n and optimal
centersf � �

k g. Here,Ck = f i : zi = kg andnk = jCk j.

In our setting, we do not necessarily need to work with the optimalK -means clustering. So let us
generalize the notion as follows: The dataf x i g is � -distributed with respect to cluster labelsf zi g
and centersf � �

k g if

kx � � �
k k2 � � �

nX

i =1

kx i � � �
zi

k2=nk ; for all x =2 Ck ;
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(a) circle-torus model (b) line-circle model

Figure S1: Examples of mixture-of-curve models that exhibit (a)L n �
p

n logn and (b)L n = O(1)
re�nement recovery threshold.

whereCk = f i : zi = kg andnk = jCk j. Setting1
n

P n
i =1 kx i � � �

zi
k2 = "2 and recalling� k = nk =n,

the condition is equivalent to

kx � � �
k k �

p
� � "

p
� k

; for all x =2 Ck : (S1)

Let us strengthen the condition slightly and consider the following notion instead

kx � � �
k k �

p
� � "

p
� min

; for all x =2 Ck ; (S2)

where� min = min k � k . (This is without loss of generality: We could have stated our results with
separate center separation parameters for each cluster, i.e.,� k = min ` 6= k k� �

k � � �
` k, in which case

we could directly compare with the original version(S1). We opted for the simpler global center
separation in the paper for simplicity.)

Now assume that the data is� -distributed and in addition:

(D1) For all distinct pairs(k; ` ), there isx 2 C` such thatkx � � �
k k � k � �

` � � �
k k.

That is, every clusterC` has points which are closer than� �
` to the centers of other clusters. Then, it

follows that
�
"

�
p

�
p

� min
(S3)

which is our separation condition. (Recall that� = min k6= ` k� �
k � � �

` k).

In fact, in the presence of (D1), we can relax� -distribution stability as follows: Assume (D1) and for
thex in (D1) assume that the inequality in(S2)holds. Then, our separation condition(S3)follows.
Note that (D1) is quite mild and one expects it to hold almost always if there is some full-dimensional
randomness in the distribution of the points in a cluster.

Alternatively, our separation condition can be written equivalently as

kx � � �
k k �

p
� � "

p
� min

; for all x 2 f � �
` g` 6= k (S4)

2







Rd [4, De�nition 3.4.1]. The sub-gaussian norm ofX is de�ned askX k 2 = supu2 Sd � 1 kuT X k 2 ,
wherek � k 2 denotes the sub-gaussian norm of a random variable andSd� 1 the unit sphere inRd.
Alternatively, we can de�ne a sub-gaussian vector with parameter� , as a random vector satisfying
P(juT X j � t) � 2 exp(� t 2

2� 2 ) for all u 2 Sd� 1 andt � 0. We will have� � k X k 2 . We also
usek � k 1 for the sub-exponential norm of a random variable. For any random variable, we have
kY 2k 1 = kYk2

 2
[4, Lemma 2.7.6]. Below we apply this fact withY = kX k = (

P d
i =1 X 2

i )1=2,
leading to the following useful lemma.
Lemma S1. Assume thatX 2 Rd is a sub-gaussian random vector with parameter� . Then,kX k is
sub-gaussian with parameter. �

p
d. In fact, for some universal constantC > 0,

kkX kk 2 � C�
p

d; kkX k2k 1 � C2� 2d:

Proof. We havekkX k2k 1 �
P d

i =1 kX 2
i k 1 =

P d
i =1 kX i k2

 2
� dC2� 2, for some universal

constantC2 > 0. The �rst inequality is the triangle inequality fork � k 1 and the second by the
equivalence of the sub-gaussian norm and sub-gaussian parameter. Next, we note thatkkX kk 2 =p

kkX k2k 1 and the result follows.

F Details of the sub-gaussian mixture example

By assumption,wi is a sub-gaussian vector with parameter� i . Then, by Lemma S1,kwi k2=d is
sub-exponential with sub-exponential norm. � 2

i . By the Bernstein inequality for sub-exponential
variables [4, Corollary 2.8.3],

P
� 1

n

� nX

i =1

kwi k2

d
� � 2

i

�
> t

�
� exp

�
� cn min

� t2

� 4
max

;
t

� 2
max

��
:

Let t = �� n , and recall that�� 2
n =� 2

max � C. Then, for a constantc1 > 0,

P
� 1

n

nX

i =1

kwi k2

d
> 2�� 2

n

�
� exp

�
� c1n

�� 2
n

� 4
max

�
:

In the Gaussian casewi � N (0; � i ), it is not hard to see thatwi is a sub-guassian vector with
parameterk� i kop. Therefore, in Gaussian mixtures, we have� max = max i k� i kop and �� 2

n =P n
i =1

1
n tr(� i )=d.

G Extension of Proposition 3

For random vectorx with distribution � C on some subsetC � Rd, let N � C (" ) be the smallest
integer for which there is a high probability" -cover ofx, that is, a �nite subsetN � C such that
P(min y2N kx � yk � " ) � 1 � n� 2: We refer toN � C (" ) as the stochastic covering number of� C.
We have the following extension of Proposition 3.
Proposition S1. Assume thatf x i gn

i =1 are independent draws from aK -mixture where thekth
component is a distribution� Ck on a subsetCk � Rr k . Letzi be the label ofx i so thatx i j zi = k �
� Ck . Assume that

min
x 2C k ; y 2C k 0

kx � yk � � > 0; for all k 6= k0:

Let N � Ck
(" ) be the stochastic covering number of� Ck . Then, there exist a constantC = C(K; �; � )

such that any ALG(p), satisfying Assumption 1, applied withL n =
P K

k=1 N � Ck
(Cn� 1=p) clusters,

recovers a perfect re�nement ofz = ( zi ) with probability� 1 � n� 1.

Proof. Let Nk � C k be the"-net that realizes the stochastic" -covering number of� Ck and let
� k : Ck ! N k be the corresponding projection operator. Then, for anyi 2 [n] for whichzi = k, we
haveP(kx i � � k (x i )k > " ) � n� 2. By union bound, we havekx i � � zi (x i )k � " for all i 2 [n]
with probability at least1 � n� 1. The collection of the fake centersf e� ` g

L n
` =1 can be taken to be the

union of the nets
S K

k=1 Nk with cardinalityL n =
P

k N � Ck
(" ). The rest of the proof follows those

of Propositions 2 and 3 with" = ( c1n1=p) � 1, c2 = 3(1 + � )=� andc1 = K 1=pc2. (Note that there is
no condition" < 1=� that needs to be satis�ed in this case.)
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H Remaining proofs

Proof of Corollary 1. We �rst construct fake centers(e� ` ) for (x i ) as in the proof of Proposition 2
and treat them as the fake centers foryi . By the triangle inequality,

� 1
n

nX

i =1

kyi � e� ezi k
2
� 1=2

�
� 1

n

nX

i =1

kx i � e� ezi k
2
� 1=2

+
� 1

n

nX

i =1

kwi =
p

dk2
� 1=2

� " +
p

2�� n

holds with probability at least1 � pn � n� 1. The result follows by applying Theorem 3.

Proof of Proposition 3.The proof follows that of Proposition 2. We only highlight the differences.
Whenzi = k, by Lemma S1,kt i � mk k is sub-gaussian with parameter� c0�

p
r k for some universal

constantc0 > 0. Thus, we haveP(kt i � mk k � t) � 2e� c0 t 2 =(r k � 2 ) . Let M =
p

3c0r� 2 logn. By
union bound, with probability at least1� 2n� 2, we havekt i � mzi k � M for all i 2 [n]. The"-cover
has to be constructed forf u : kuk � M g in the`2 norm, which can be done with a net of size at most
L 0 = (1 + 2 M=" )r . Take" = ( c1n1=p) � 1 and letc2 = 3 � (1 + � )=� . As long asn� min > (c2=c1)p,
the separation condition in(8) is satis�ed and we haveMiss(z; bz) � K (c2=c1)p=n. Hence, as long
asc1 > K 1=pc2, we will haveMiss(z; bz) < 1=n which impliesMiss(z; bz) = 0 . We also need to
satisfy" < 1=� that isc1 � �=

p
n. Takingc1 = K 1=pc2 + � satis�es all the required constraints on

c1. The required number of clusters is

L n = KL 0 = K (1 + 2M=" )r = K (1 + 2c1

p
3c0r� 2n1=p

p
logn)r

� C(n1=p
p

logn)r

for C = K (2 + 2c1
p

3c0r� 2)r . Here, we have used1 � 2n1=pp
logn for n � 2. Note that since

c2=c1 < 1 andn� min � 1, the conditionn� min > (c2=c1)p is automatically satis�ed. The proof is
complete.

I Proofs of the lemmas

Proof of Lemma 1.Recall thatb� is the output of ALG forL clusters. Letb� (K ) be the output of the
ALG for K clusters. Then, sinceL � K ,

bQ(b� ) � bQ(b� (K ) ) � � bQ(K )
min ; where bQ(K )

min := min
� 2X K

bQ(� ):

The �rst inequality is by the monotonicity of ALG and the second by its constant-factor approximation
property. Since by assumption� � 2 X K , we have

bQ(K )
min � bQ(� � ) �

� 1
n

nX

i =1

kx i � � �
zi

kp
� 1=p

� ":

It follows that bQ(b� ) � �" . Recalling(9) and noting thatbQ(b� ) =
�

1
n

P n
i =1 kx i � b� bzi k

p
� 1=p

, we have

Q(b� ; � � ) =
� 1

n

nX

i =1

min
` 2 [L ]

k� �
zi

� b� ` kp
� 1=p

�
� 1

n

nX

i =1

k� �
zi

� b� bzi k
p
� 1=p

�
� 1

n

nX

i =1

kx i � � �
zi

kp
� 1=p

+
� 1

n

nX

i =1

kx i � b� bzi k
p
� 1=p

� " + �" (S6)

where the second line is the triangle inequality in the aforementionedL p(� n ; X ) space. The proof is
complete.

Proof of Lemma 2.Consider the partition of the space by the Voronoi cells of� = ( � ` ). Assume
�rst that there is a Voronoi cell that contains at least two distinct elements of� � , e.g.,� �

k1
and� �

k2
,

with k1 6= k2, both belonging to the Voronoi cell of� ` 0 . That is,min` k� �
k � � ` k = k� �

k � � �
` 0

k for
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k = k1; k2. As k� �
k1

� � �
k2

k � k � �
k2

� � �
` 0

k + k� �
k1

� � �
` 0

k, at least one of thek = k1; k2 satisfy
k� �

k � � �
` 0

k � k � �
k1

� � �
k2

k=2, and assume this is true fork = k1, we have

Q(� ; � � ) � � 1=p
min k� �

k1
� � ` 0 k �

� 1=p
min

2
k� �

k1
� � �

k2
k �

� 1=p
min

2
�:

Otherwise, each Voronoi cell of� contains at most one element of� � . On the other hand, each
element of� � belongs to at least one Voronoi cell of� , since the union of Voronoi cells is the whole
space. It follows that there areK distinct Voronoi cells of� , each of which contains exactly one
element of� � . Thus, there is an injective map� : [K ] ! [L ] such that� �

k belongs to Voronoi cell of
� � (k ) , that is,min` k� �

k � � ` k = k� �
k � � � (k ) k. Then,

Q(� ; � � ) � � 1=p
min

� KX

k=1

k� �
k � � � (k ) k

p
� 1=p

� � 1=p
min dp(�; � � ):

The proof is complete.

Proof of Lemma 3.By assumption, there exists an injective map� : [K ] ! [L ] such that

max
k2 K

k� �
k � b� � (k ) k � :

Then,� is invertible onIm( � ) := f � (k) : k 2 [K ]g, with an inverse denoted as� � 1. We obtain

k� �
� � 1 ( ` ) � b� ` k � ; 8` 2 Im( � ): (S7)

First assume thatbzi 2 Im( � ). We prove that� (zi ) = bzi by contradiction. Suppose that� (zi ) 6= bzi .
Then, we show thatkx i � b� � (zi ) k < kx i � b� bzi k contradictingbzi = argmin

`
kx i � b� ` k2. By the

triangle inequality

kx i � b� � (zi ) k � k x i � � �
zi

k + kb� � (zi ) � � �
zi

k � � + : (S8)

Sincebzi 2 Im( � ) and� (zi ) 6= bzi , we have� � 1(bzi ) 6= zi . By (S7), kb� bzi � � �
� � 1 ( bzi ) k �  . Therefore,

kx i � b� bzi k � k b� bzi � � �
zi

k � k x i � � �
zi

k

� k � �
zi

� � �
� � 1 ( bzi ) k � k b� bzi � � �

� � 1 ( bzi ) k � �

� � �  � �: (S9)

Since by assumption� > 2 + 2 � , the claimed contradiction follows by combining(S8)and(S9).
Hence, we have� (zi ) = bzi whenbzi 2 Im( � ). De�ne ! (�) = � � 1(�) on Im( � ) � [L ]. Then,!
satis�es! (bzi ) = zi wheneverbzi 2 Im( � ). This �nishes proof for the caseL = K .

Next, we de�ne! for `0 =2 Im( � ). Sinceb� is an ef�cient solution, there exists at least onei 2 [n]
such thatbzi = `0. When there is only one suchi , we can just let! (`0) = ! (bzi ) = zi . When there
are at least two data pointsx i andx j such thatbzi = bzj = `0, we are going to show, by contradiction,
that their true cluster labels must be the same, i.e.,zi = zj . Suppose thatzi 6= zj , then we will show
thatkx i � b� ` 0 k > kx i � b� � (zi ) k which contradictsx i being in the Voronoi cell ofb� ` 0 . Inequality(S8)
still holds in this case. Furthermore

kx i � b� ` 0 k � k b� ` 0 � � �
zi

k � k x i � � �
zi

k

� k x j � � �
zi

k � k x j � b� ` 0 k � �

� k � �
zi

� � �
zj

k � k x j � � �
zj

k � k x j � b� ` 0 k � �

� � � 2� � k x j � b� ` 0 k: (S10)

Sincex j is in the Voronoi cell ofb� ` 0 and`0 =2 Im(� ), we havè 0 6= � (zj ). Therefore,

kx j � b� ` 0 k � k x j � b� � (zj ) k

� k x j � � �
zj

k + kb� � (zj ) � � �
zj

k

� � + : (S11)
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Combining inequalities (S8), (S10) and (S11) and using the assumption� > 2 + 4 � , we get

kx i � b� ` 0 k � � � 3� �  > � +  � k x i � b� � (zi ) k

which is the claimed contradiction. Therefore, we can de�ne! on [L ] n Im( � ) so that! (bzi ) = zi
whenbzi =2 Im( � ). Combining with the de�nition of! on Im( � ), we have successfully constructed a
surjective map! : [L ] ! [K ] satisfying! (bzi ) = zi for all i 2 [n]. The proof is complete.
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